Memorandum

To: Sean Scanlon, Tweed Airport Date: February 10, 2021

From: Nick Campbell, FHI

Subject: Tweed Airport Master Plan Update

Technical Advisory Committee Meeting #3

Summary of 1/5/2021 Meeting

The third Technical Advisory Committee (TAC) meeting for the Tweed New Haven Airport (HVN) Airport Master Plan Update (APMU) was conducted from 5:00 pm to 6:30 pm on January 5, 2021. The meeting was held virtually due to COVID-19. The TAC meeting was attended by 14 TAC members along with several members of the project team and HVN staff.

Jeff Wood, with McFarland Johnson (MJ), welcomed the TAC members, and Sean Scanlon, Executive Director of Tweed New Haven Airport, provided a brief overview of the goals of the AMPU. Mr. Scanlon introduced Jeremy Nielson, the airport manager for HVN. Mr. Wood went over the general organization of the virtual meeting and the agenda for the evening. Mr. Wood updated the committee on the project schedule, and he and Laura Canham (MJ) presented an update on the AMPU, which was followed up by questions and discussion with TAC members. The presentation is attached.

Mr. Wood presented the constrained and unconstrained runway length facility requirements identified. In addition, Mr. Wood highlighted the different alternatives under consideration to increase the operational reliability of the airport, while understanding that the runway length needs to balance operational reliability, safety, community, and environmental impacts. Mr. Wood presented the various alternatives that the project team had developed for the airfield by identifying existing constraints and areas of the airport that should be enhanced to comply with Federal Aviation Administration (FAA) regulations. Mr. Wood emphasized that the optimal runway length of 7,600 feet was <u>not feasible</u> and was <u>not being considered</u> in any alternatives moving forward. Several runway and taxiway alternatives were presented with the goal of accommodating the existing and future design aircraft anticipated to use HVN. The runway alternatives include a 6,635-foot-long runway plus Engineered Materials Arresting System (EMAS) that meets both runway end declared distances of at least 6,000 feet.

Ms. Canham presented three terminal alternatives. Ms. Canham identified existing issues with the current terminal in its existing location and size, and potential benefits that could be realized by considering alternate terminal locations or configurations. In particular, vehicle access to the Airport is constrained and is provided through residential neighborhoods, which is not ideal and proves an incompatible land use surrounding the existing terminal location. An alternative location was proposed on the east side of the airport, which would alleviate the incompatible land use and improve roadway access.

General Aviation (GA) hangars and other ancillary buildings could be constructed and/or expanded to meet future demand and generate revenue opportunities for the airport. If the terminal were relocated, there could be opportunities to provide wetland mitigation on the west side.

TAC members asked questions and shared comments related to the presentation. The following is a summary of the questions and comments by TAC members and key discussion points.

- A member of the TAC commented that they were pleased to be receiving more messages from the project team with regards to the project.
- In response to a TAC member query, Mr. Wood commented that the GA alternatives proposed were just samples and that there was a lot of potential for the final configuration of hangar space. GA development would be demand based.
- Another member of the TAC asked if there was an image that displayed all the alternatives on one graphic. The project team proceeded to sketch the various alternatives on the aerial image in the presentation.
- One member commented on the proximity of the wetlands to the proposed terminal and inquired how access would be facilitated. In response, the project team noted that the wetlands will likely be bridged, though wetland impacts are anticipated.
- A discussion ensued on the size of the proposed parking area to be reserved and the effect that
 would have on the airport, traffic, and the environment. Green parking alternatives and/or
 reduced parking were suggested by TAC members. It was noted that cities, like Hartford, are
 starting to reduce parking requirements for businesses. Mr. Wood indicated stormwater
 management will be a high priority with the parking area. The parking area includes a buffer of
 space and includes roadway and could be a placeholder to include transit and other items besides
 just vehicle parking.
- Another TAC member mentioned that airport traffic control tower visibility should be reviewed
 with the location of some proposed and existing hangars, as well as the need to include parallel
 taxiways in addition to the runway expansion. The project team confirmed that control tower
 visibility should be assessed prior to any buildings being constructed and that GA alternatives are
 demand driven. The GA alternatives presented were a visualization to confirm that HVN could
 meet the facility requirement needs identified, but ultimate development will likely look
 different.

Following the alternatives discussion, Mr. Wood laid out the next steps of the AMPU process, which involves the following steps:

- Selection of the preferred alternative
- Airport Layout Plan FAA approval
- The National Environmental Policy Act (NEPA) environmental review process
- Final design, permitting, and implementation.

These next steps resulted in two additional questions from TAC members, one asking for confirmation of the presentation being distributed, and the other if cost estimates had been started for the various proposals. Mr. Wood confirmed the presentation would be distributed, and he stated that cost estimates will be prepared for all aspects of the preferred alternative.

Attendees:

- Sean Scanlon, HVN
- Jeremy Nielson, HVN/Avports
- Felipe Suriel, HVN/Avports
- Lisa Lesperance, FAA
- Barry Hammer, FAA
- Julie Seltsam, FAA
- Bob Bruno, Connecticut Airport Authority
- Charles Skelton, Yale Aviation / CFI
- Don Relihan, Yale University
- Douglas Hausladen, City of New Haven
- Eliot Jameson, Tweed-New Haven Airport Authority (TNHAA) Volunteer
- Giovanni Zinn, City of New Haven,
- James Yeske, TNHAA
- Rasmus Agerskov, Avports
- John Olson, Midwest Air Traffic Control Services
- Johnson Chang-Fong, Technical Representative Avports Engineering
- Andrew King, Avports
- Jeff Wood, MJ
- Laura Canham, MJ
- Steve Bourque, MJ
- Nick Campbell, Fitzgerald & Halliday, Inc.
- Laurel Stegina, Fitzgerald & Halliday, Inc.

MASTER PLAN UPDATE

Tweed-New Haven Airport Authority

Logistics

- Meeting Recording
- Please Mute Your Microphone
- Sign-In Sheet Please Send a Chat with:
 - Name
 - Affiliation
 - Email Address
- Questions Will be Addressed at the End
 - Send a Chat any Time During the Presentation
 - Open Mic Q&A at the Conclusion

Introductions

- Sean Scanlon, Executive Director
- Jeremy Nielson, Airport Manager
- Attendees

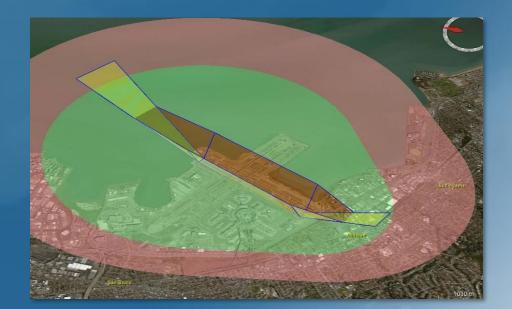
Agenda

- Introductions
- Facility Requirements Summary
- Alternatives
- Next Steps
- Conclusion/Questions

Facility Requirements

Inventory

Forecasts


Environmental Overview

Facility Requirements

Alternatives

Airport Layout Plan (ALP)

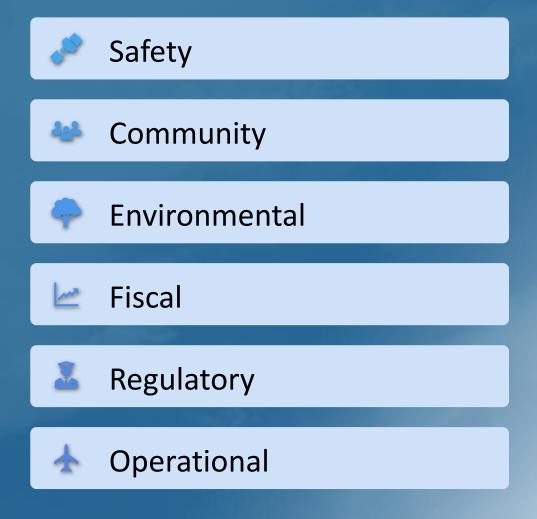
- Goal: Identify Needs for Alternatives
 - Compare Existing Conditions To:
 - FAA Safety Standards
 - FAA Design and Geometry Standards
 - Code of Federal Regulations Airspace Surfaces
 - Forecasts

Runway Length

- Goal: Provide Adequate Runway Length to Leisure Destinations in the Southeast
- Runway Length Needs to Balance Operational Reliability, Safety, Community, and Environmental
- Reliability is Critical for Sub-Daily Operators the Longer a Runway, the More Reliable Service Can Be
- Unconstrained Recommendation: 7,600' this is <u>NOT</u>
 Feasible
- Constrained Recommendation: 6,635'

Find Balance between Airport Limitations and Operational Reliability

Comparative Routes


Airport	Destinations	Runway Length	Aircraft Type
Westchester	Fort Myers, FL (958 nm)	6,549 feet	A320
Ogdensburg	Orlando-Sanford, FL (993 nm)	6,400 feet	A319, A320
Trenton-Mercer	Miami, FL (911 nm)	6,006 feet	A319, A320
Chicago Midway	Fort Lauderdale, FL (1,015 nm)	6,522 feet	B737

Recommended Runway Length Balance

 Constrained Recommendation of 6,635 Feet Balances the Following:

Airside Facility Requirements Summary

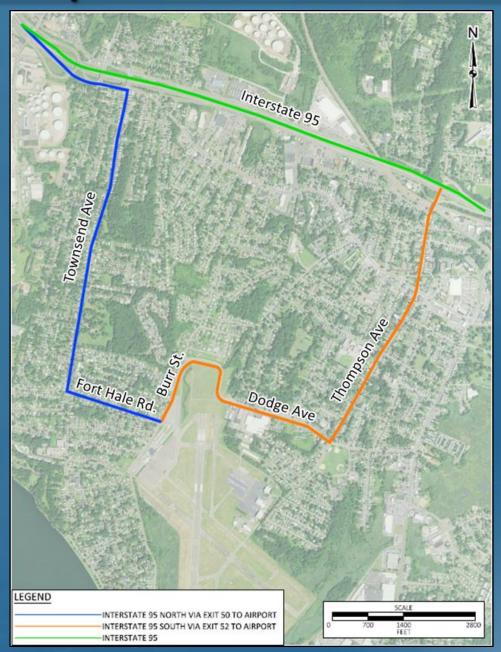
Item/Facility	Demand		
Runway Length	6,635′		
Runway Safety Area	Review Fence and Road in Runway 20 RSA Address RSA Transverse Grading		
Runway Object Free Area	Review Fence, Road, and NAVAIDs in Runway 20 ROFA		
Runway Protection Zone	Control of All RPZs Through Ownership or Avigation Easements		
Runway Lighting	Update to Cable in Conduit Remove Runway 14-32 Lights		
Runway Visual Aids	Upgrade to MALSR Runway 2 Install REIL on Runway 20		
Instrument Approaches	Lower Runway 2 Minimums, if Possible Provide Vertical Guidance to Runway 20, if Possible		
Taxiways	Full Parallel Taxiway to Runway 2-20 that Meets FAA Design Standards Address Taxilane/Taxiway Object Free Areas Address Airfield Geometry Concerns and Meet FAA Standards		

Airfield Geometry Standards

- High Energy Intersection
- Direct Access
- Taxiway Intersecting Runway at Other Than a Right Angle
- Unexpected Hold Lines

Passenger Terminal Requirements

		100 Peak-	150 Peak-	200 Peak-	250 Peak-
	Existing	Hour	Hour	Hour	Hour
Terminal Functional Area	Provision	Passengers	Passengers	Passengers	Passengers
Check-In /Ticketing	1,648	949	1,446	1,897	2,394
Baggage Screening & Makeup	751	3,115	3,240	3,240	3,240
Security Screening Checkpoint	1,356	4,883	4,981	6,366	8,854
Secure Holdrooms	1,865/1,511	5,780	6,878	9,072	12,364
Baggage Claim and Inbound					
Baggage	769	5,566	4,292	8,820	12,265
Concessions	1,090	2,078	3,117	4,156	5,194
Other Functions/Tenants	5,810	12,286	15,644	17,871	23,689
Total	14,800	34,657	39,598	51,422	68,000
Passenger Terminal		30,000-	35,000-	50,000-	65,000-
Requirement Range		35,000	40,000	55,000	70,000


Recommendation Priorities:

- 1) Expand Baggage Claim Area
- 2) Expand Secure Holdroom
- 3) Expand Security Checkpoint
- 4) Expand Circulation and Support Facilities
- 5) Expand Outbound Baggage Screening Area (In-line System)

Total Additional Space - 20,000-55,000 SF

Airport Access

Access Route	I-95 N via Exit 50	I-95 S Via Exit 52
Stops	5	6
Speed Limit	25-30 mph	25-30 mph
Driving Through	Residential	Residential

Ideal Airport Access:

- Through Commercial/Industrial (Avoid Residential Areas)
- Few Stops
- Expedient High Speed Limits

GA and Landside Facility Summary

Item/Facility	Demand	
Hangars	2 Additional Individual Hangars 44,200 SF Additional Conventional Hangar Business Hangar(s) Private Investment	
General Aviation and Admin Parking	Deficiencies: Existing: 99, Future: 121	
General Aviation Fueling	Plan for Electric Aircraft Parking and Charging Additional Fuel Tanks as Needed	
Utilities	Improve Terminal Power Load	
Airport Traffic Control Tower	Upgrade and/or Replace Building and Technology Provide a Full Power Generator	
Aircraft Rescue and Fire Fighting	Increase ARFF from 4,500 SF to 6,500 SF	
Maintenance/ Snow Removal Equipment	Increase Maintenance/SRE from 9,500 SF to at least 22,000 SF Replace Vehicles Per Eligibility	
Other	Electric Automobile Charging Stations Drainage Study Resiliency Planning	

Alternatives

Inventory

Forecasts

Environmental Overview

Facility Requirements

Alternatives

Airport Layout Plan (ALP)

- Airfield Alternatives
- Terminal Alternatives
- General Aviation Alternatives

Runway Alternatives Process

Identify Critical Runway Length
Need

Accelerate Stop Distance Available Landing Distance Available

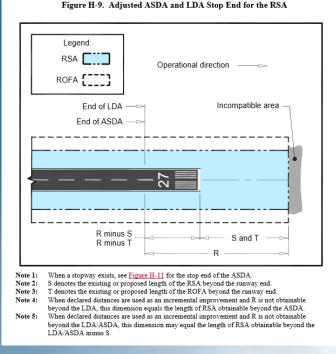
Review the Constraints: Generally, Remain Within the Existing Safety Areas Due to Environmental Constraints and Community Feedback

Alternatives: (1) No EMAS, (2) With EMAS

Weighing Pros and Cons

Preferred Alternative and Potential Changes Will Be Determined Based on Feedback

Next Step: FAA Will Evaluate the Documentation

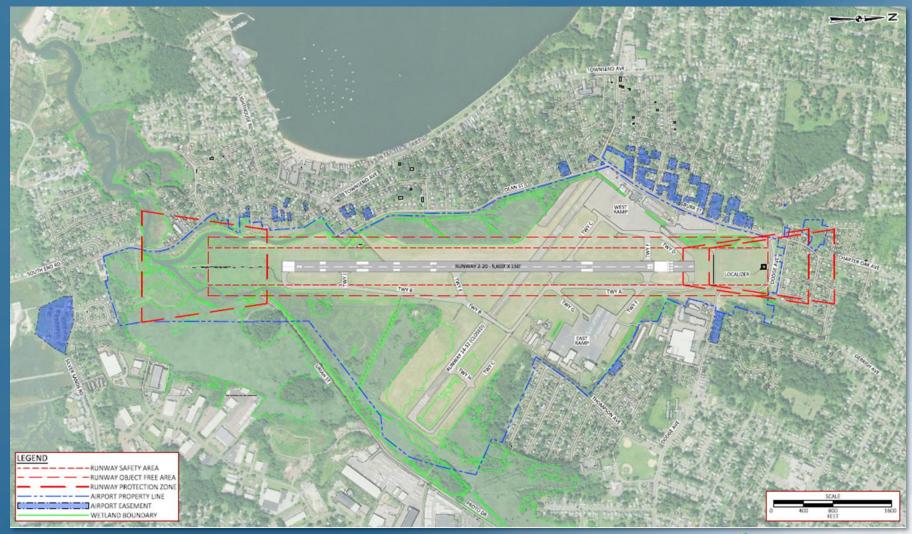

Engineered Materials Arresting System

- EMAS: Crushable Material Placed at the End of a Runway to Stop an Aircraft That Overruns a Runway
- Aircraft Tires Sink Into Lightweight Material,
 Decelerating the Aircraft
- EMAS Improves Safety
 When 1,000 feet of
 Overrun is Not Available

Declared Distances

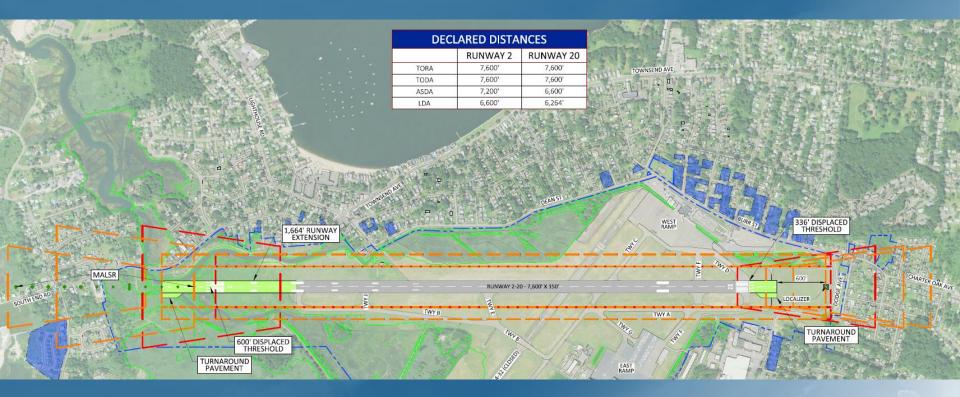
- Represent the Maximum Distances Available for Meeting Takeoff (TORA/TODA), Rejected Takeoff (ASDA), and Landing Distance (LDA) Performance Requirements
- Used for a Variety of Purposes
 - Obtain Additional RSA/ROFA
 - Mitigate Unacceptable Incompatible Land Uses in RPZ
 - Meet Runway Approach and/or Departure Surface Clearance Requirements
 - Mitigate Environmental Impacts
- Only Acceptable When It Is Impractical to Meet Design Requirements

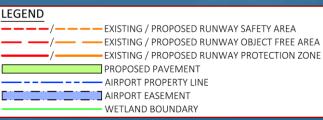
Constraints



Constraints Include:

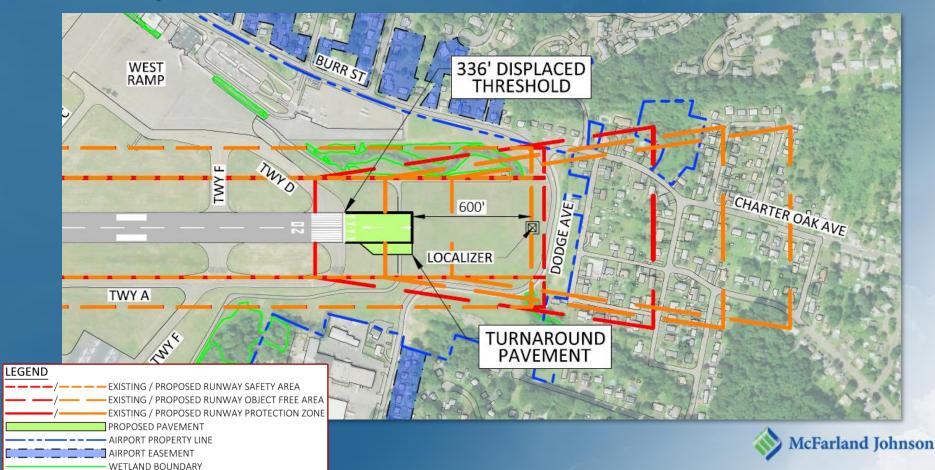
- Residential
- Roads/Streets
- Navigational Aids
- Wetlands/Creeks/Streams

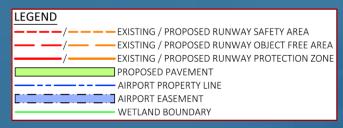

No Build

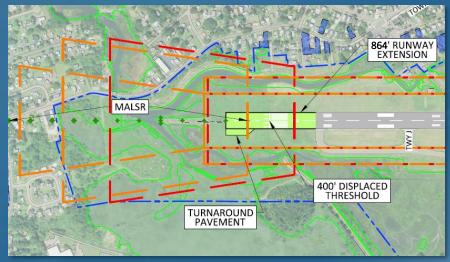


Alternatives Considered and Dismissed

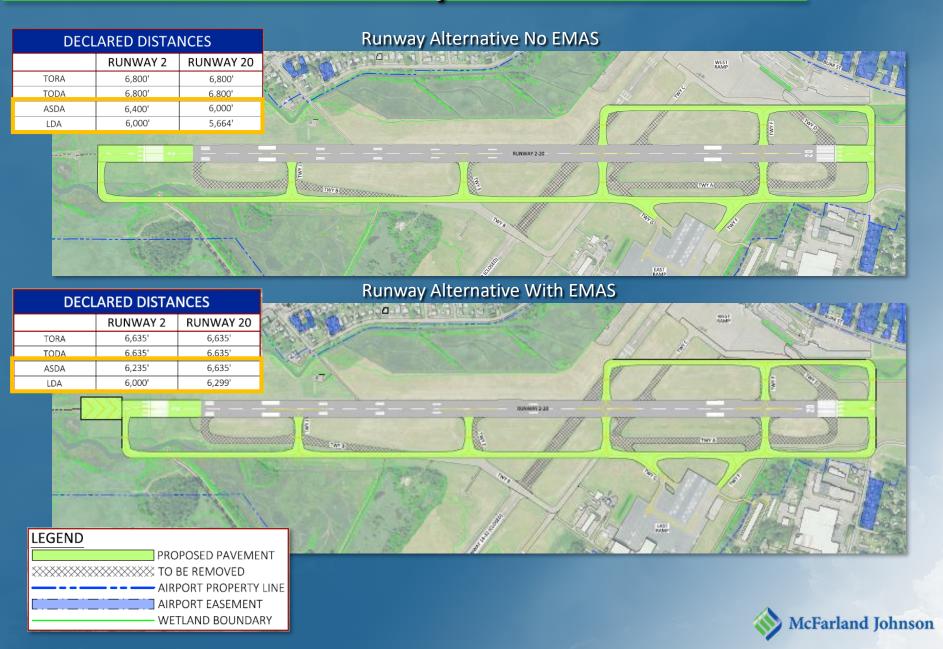
• 7,600-foot Long Runway




Runway 20 Extension


- 336 Foot Runway Extension
- Additional Turnaround Pavement
- No Impacts to NAVAIDs

Runway 2 Extension


- 864-Foot Runway Extension
- 699-Foot Runway Extension
- Engineered Materials
 Arresting System (EMAS)

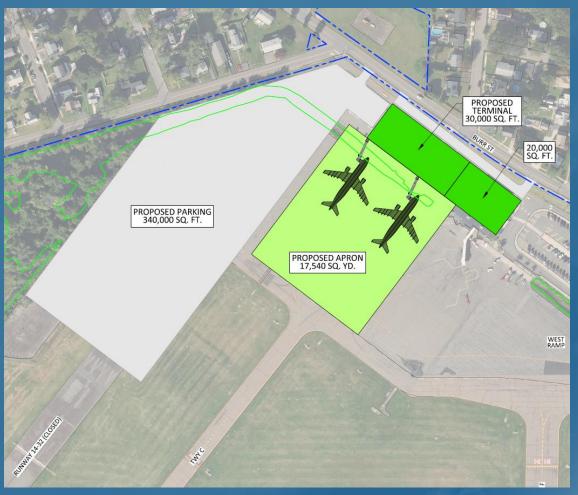
Combined Runway Alternatives

Airfield Alternative Overview

Item/Facility	No Build	Runway Alternative No EMAS	Runway Alternative with EMAS	
Meets FAA Standards	No	Yes	Yes	
Meets Facility Requirements	No	Improves Conditions – Does not meet 6,000 LDA/ASDA	Yes	
Flexibility	None – is not flexible to the changing fleet	Improves Conditions	Yes	
Environmental	None	Low Impacts No Direct Impact to Tuttle Creek	Low Impacts No Direct Impact to Tuttle Creek	
Construction Costs (Comparative)	Low/None	Medium	High	
Operational Costs	Low	Low	High	

Runway Alternatives Summary

- Critical Runway Lengths are Accelerate Stop Distance Available (ASDA) and Landing Distance Available (LDA)
- Additional Runway Length Improves Operational Reliability Especially During Inclement Weather (e.g. Wet/Winter Conditions)
- Master Plan Focused on Developing Alternatives Within the Existing Runway Safety Area (RSA) Footprint
- 7,600-foot Runway Length Is <u>NOT</u> Feasible
- Both Feasible Alternatives Generally Fit Within Footprint
- Final Preferred Alternative May Be Adjusted Based on Feedback
- FAA Will Evaluate Documentation in Master Plan Prior To Approving the Airport Layout Plan (ALP)
- Projects Must be Shown on the ALP to Be Eligible For Funding
- FAA Will Re-Evaluate at Subsequent Funding and Approval Steps



Taxiway Alternative Overview

Item/Facility	No Build	Full-Length Parallel Taxiway	
Meets FAA Standards	No	Yes	
Meets Facility Requirements	No	Yes	
Flexibility	None	Yes	
Environmental	None	High	
Costs (Comparative)	None	High	

Terminal Alternative 1

PROPOSED PAVEMENT PROPOSED BUILDING PROPOSED PARKING AIRPORT PROPERTY LINE WETLAND BOUNDARY A319

Pros:

- Uses Existing Parking Lots and Circulation Roads
- Has Low Environmental Impacts

Cons:

- Does Not Address Access Concerns
- Constructability
- Is Constrained Site No Flexibility
- Is Not Compatible with Adjacent Land Use
- Requires Aircraft To Cross Active Runway for Runway 2 Departure/Runway 20 Landing
- Requires Fuel Trucks To Cross RSA

McFarland Johnson

Terminal Alternative 2

PROPOSED PAVEMENT PROPOSED BUILDING PROPOSED PARKING AIRPORT PROPERTY LINE WETLAND BOUNDARY A319

Pros:

- Provides Infrastructure Flexibility
- Can Utilize Existing Parking Lots and Circulation Roads
- Has Low Environmental Impacts
- Improves Constructability

Cons:

- Does Not Address Access Concerns
- Is Not Compatible with Adjacent Land Use
- Requires Aircraft To Cross Active Runway for Runway 2 Departure/Runway 20 Landing
- Requires Fuel Trucks To Cross in RSA
 McFarland Johnson


Terminal Alternative 3

Pros:

- Provides Infrastructure Flexibility
- Improves Roadway Access
- Best Constructability
- Is Compatible with Adjacent Land Uses
- Provides Shorter Taxi Route to Runway 2
- Has Close Proximity to Fuel Farm
- Improves Safety by Reducing Runway Crossings
- Terminal Is Closer to ARFF

Cons:

- Has Higher Cost
- Impacts Existing Disturbed Wetlands

McFarland Johnson

Terminal Alternative Overview

Item/Facility	No Build	Terminal Alt. 1 – Existing Location	Terminal Alt. 2 – West New Terminal	Terminal Alt. 3 – East Side Terminal
Meets FAA Standards	No	No - Runway Crossing; Fuel Truck Crosses RSA	No - Runway Crossing; Fuel Truck Crosses RSA	Yes
Meets Facility Require- ments	No	No – Does not Address Access Concerns	No – Does not Address Access Concerns	Yes
Flexibility	None – Constrained	Low	Medium	High

High – Roadway Improvements Incompatible Adjacent Land Use

Low

Medium

High – Roadway Improvements Incompatible Adjacent Land Use

Low

Medium

Low – New Access

High

Higher

Medium – Existing Impacts Will

Remain

Incompatible Adjacent Land Use

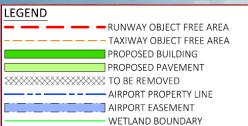
None

None

Community


Impacts

Environ-


mental

Costs

General Aviation Alternatives - East

- Meet Facility Requirements
- GA/Tie-down Layout versus more Corporate Layout

General Aviation Alternatives - West

T-Hangars:

- Meets Facility Requirements
- Moves GA West, Allows for Separation of Corporate and GA
- Wetland Expansion: 7 acres

Corporate/Business Alternative:

- Meets Facility Requirements
- Wetland Expansion: 7 acres

General Aviation Alternative Overview

Item/Facil ity	No Build	East Ramp – GA	East Ramp – Corporate	West Ramp – GA	West Ramp - Corporate
Meets FAA Standards	No	Yes	Yes	Yes (including ARFF and SRE Expansion)	Yes (including ARFF and SRE Expansion)
Meets Facility Require- ments	No	Yes	Yes – most current tie- downs in hangars	Yes – GA would move West, East Corporate	Yes
Flexibility	No	Yes	Yes	Improved	Yes
Environ- mental	Low	Low	Low	Provides Environmental Mitigation Opportunities	Provides Environmental Mitigation Opportunities
Costs	None	Medium	Medium	High	Low

Alternative Discussion

Next Steps

- Preferred Alternative
 - Final Determination Will be Shown on the Airport Layout Plan (ALP)
- Airport Layout Plan FAA Approval
 - Projects Must Be Shown on the ALP to Be Eligible For Funding
 - Approval of the ALP Will Be Conditioned Upon Completion of the National Environmental Policy Act (NEPA)
 - Design and Construction is Subject to Funding Availability

After the Master Plan

- National Environmental Policy Act (NEPA) process
 - Project Purpose and Need is the Foundation of NEPA Documents
 - FAA Will Carefully Review the Purpose and Need
- Final Design and Permitting
- Begin Implementation

Conclusion / Questions

